

EXAMINATIONS COUNCIL OF ESWATINI Junior Certificate Examination

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
ADDITIONAL MAT	THEMATICS	519 October/November 2019
Additional Materials	: Geometrical instruments	2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all work you hand in.

Write in dark blue or black pen.

Answer all questions.

You may use an HB pencil for any diagrams or graphs or rough working. Do **not** use staples, paperclips, highlighters, and glue or correction fluid.

All working must be clearly shown.

Electronic calculators may be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures.

Give answers in degrees to one decimal place.

For π , use 3.14 or the value given in the specific question.

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 100.

For Examiner's		
Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

1 Work out.

(a)
$$\begin{pmatrix} 2 & -4 \\ 3 & 0 \end{pmatrix} - \begin{pmatrix} 3 & 5 \\ -1 & 7 \end{pmatrix}$$

Answer (a)......[2]

(b)
$$3\begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$$

Answer (b).....[2]

(c)
$$\left(-3 \quad 5\right)\left(\begin{matrix} 2\\ -7\end{matrix}\right)$$

Answer (c)......[2]

(d)
$$\begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix}$$

(e) Given that
$$\begin{pmatrix} x & 3 \\ -3 & y \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$
, find the values of x and y.

Answer (e) x = and y = [3]

2 (a) Remove brackets and simplify completely.

(i) 9 - 2(3x - 1)

(ii) (x+9)(x-2)

Answer (a)(ii)......[2]

(b) Simplify $\frac{2}{x-1} - \frac{4}{2x+1}$.

(c) Given that $\frac{ay+x}{x} = 4 - y$, make y the subject of the formula.

Answer (*c*)......[3]

3 (a) Solve the following simultaneous equations.

$$4x + y = 13$$

$$3x - 2y = 7$$

(b) Factorise $x^2 - 8x + 15$.

Answer (*b*)......[2]

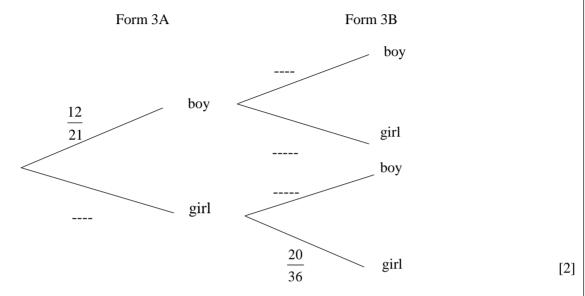
(c) Solve the following equations.

(i)
$$7 = \frac{7x}{3}$$

Answer (*c*)(i)......[1]

(ii)
$$a^2 - 25 = 0$$

Answer (*c*)(ii).....[2]


For Examiner's

Use

There are 21 students in Form 3A:12 are boys and 9 are girls. There are 36 students in Form 3B: 16 are boys and 20 are girls.

The head teacher chooses two students at random, one from each class.

(a) Copy and complete the following tree diagram.

- (b) Calculate the probability that
 - (i) both students are girls,

(ii) one is a boy and one is a girl.

Answer (*b*)(ii)......[3]

Examiner's
Use

- **5** (a) Use function notation to describe the following functions represented by the arrow diagrams.
 - (i) $7 \longrightarrow 49$ $8 \longrightarrow 64$ $9 \longrightarrow 81$ $10 \longrightarrow 100$

Answer (a)(ii).....

.....[2]

- **(b)** Function f is defined by f(x) = 3x + 2.
 - (i) Evaluate f (3)

Answer (*b*)(i)......[1]

(ii) Find x if f(x) = -7

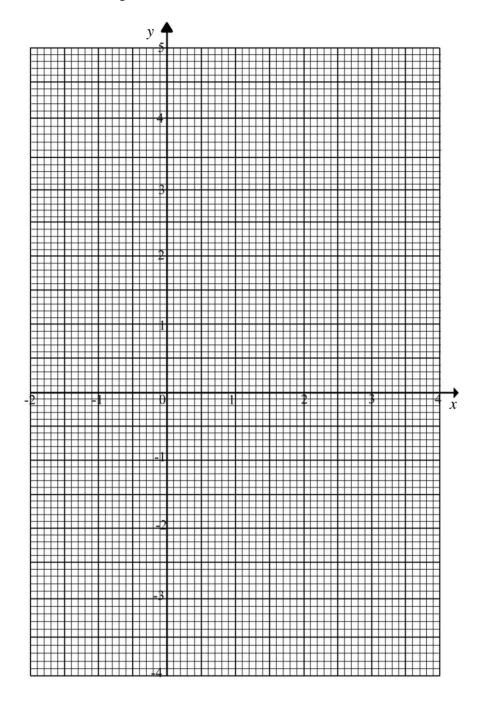
(c) Solve the inequality $\frac{2m+3}{6} < \frac{m-5}{2}$.

Answer (*c*).......[3]

)	(a)		nen leaves town B for town C which is 30 km due south of town B.
		(i)	Draw a rough sketch of the journey.
		(ii)	[2] Calculate how far the boy is from town A.
			Answer (a)(ii)[3]
		(iii)	Using trigonometry, calculate the bearing of the direct journey from C to A.
			Answer (a)(iii)[4]
	(b)		lder of length 8 m rests against a wall so that the angle between the ladder and the is 31°.
		How	far is the base of the ladder from the wall?
			Answer (b)[3]

ror	
Examiner	'S

(c)	A hunter on level ground sees a bird at the top of a tree 3 m high.		
	The angle of depression of the hunter from the bird is 23°.		
	(i)	Calculate the distance from the hunter to the bird.	
		Answer (c)(i)[3]	
	(ii)	State the angle of elevation of the bird from the height.	
		Answer (c)(ii)[1]	


©ECESWA 2019

x	-2	-1	0	1	2	3	4
$y = x^2 - 2x - 3$	5	0	-3	а	-3	0	b

(a) Find the values of a and b.

Answer	(a))	[2]

(b) Using a scale of 2 cm to 1 unit on each axes, plot the points and draw a smooth curve in the range $-2 \le x \le 4$.

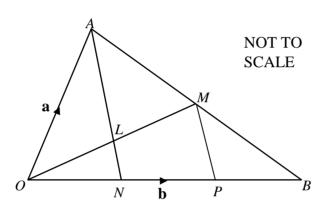
[4]

- (c) On the same set of axes, draw the line y = x.
- (d) Use your graph to solve the equation $x^2 2x 3 = x$.

Answer (d)
$$x =$$
 or $x =$ [2]

	For
(e) Write down the equation of the line of symmetry of the graph.	Examiner
	Use
Answer (e)[1]	

For The point *P* has co-ordinates (1, -4) and $\overrightarrow{PQ} = \begin{pmatrix} 5 \\ -8 \end{pmatrix}$. Use


Examiner's

- **(i)** Write down the co-ordinates of Q.
- *Answer* (a)(i)......[2]

Work out $|\overrightarrow{PQ}|$.

Answer (a)(ii)......[3]

(b)

In the diagram, M is the midpoint of AB and L is the midpoint of OM. ON = NP = PB.

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Find, in terms of **a** and **b**, \overrightarrow{AB} . **(i)**

Answer (*b*)(i)......[1]

(ii) Find, in terms of **a** and **b**, in its simplest form, \overrightarrow{OM} .

For

(iii)	Find, in terms of a and b , in its simplest form, \overrightarrow{AL} .	For Examiner's
(iv)	Answer(b)(iii)	Use
(v)	Find \overrightarrow{MP} , in terms of a and b , and show that it simplifies to $\frac{1}{6}$ b $-\frac{1}{2}$ a .	
(vi)	Answer $(b)(v)$	
	Answer (b)(vi)[2]	

9 Mr. Zungu's class scored the following marks in an Additional Mathematics test.

For
Examiner's
Use

Marks	Number of students	Cumulative frequency
0	0	0
5	4	4
10	7	11
15	5	
20	10	26
25	8	
30	3	37
35	11	48
40	2	

(a) Complete the cumulative frequency table.

[2]

For Examiner's

Use

(b) Using a scale of 1 cm to represent 5 marks on the horizontal axis and 1 cm to represent 5 students on the vertical axis, draw a cumulative frequency curve.

[4]

(c) Use your cumulative frequency curve to find the median mark.

Answer (*c*).......[2]

(d) If 29 students passed the test, what was the pass mark?

Answer (*d*)......[2]

16

BLANK PAGE

Permission to reproduce items where third party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.